
Talanta 68 (2005) 31–39

QSPR prediction of GC retention indices for nitrogen-containing
polycyclic aromatic compounds from heuristically computed

molecular descriptors

Rong-Jing Hua, Huan-Xiang Liua, Rui-Sheng Zhanga,b,∗, Chun-Xia Xuea,
Xiao-Jun Yaoa, Man-Cang Liua, Zhi-De Hua, Bo-Tao Fanc

a Department of Chemistry, Lanzhou University, Lanzhou 730000, China
b Department of Computer Science, Lanzhou University, Lanzhou 730000, China
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Gas chromatographic retention indices of nitrogen-containing polycyclic aromatic compounds (N-PACs) have been predicted by q
tructure–property relationship (QSPR) analysis based on heuristic method (HM) implemented in CODESSA. In order to indicate th
f different molecular descriptors on retention indices and well understand the important structural factors affecting the experimen

hree multivariable linear models derived from three groups of different molecular descriptors were built. Moreover, each molecular
n these models was discussed to well understand the relationship between molecular structures and their retention indices. T

odels gave the following results: the square of correlation coefficient,R2, for the models with one, two and three molecular descriptors
.9571, 0.9776 and 0.9846, respectively.
2005 Published by Elsevier B.V.
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. Introduction

Nitrogen-containing polycyclic aromatic compounds (N-
ACs) are derivatives of polycyclic aromatic hydrocarbons
PAHs) containing two or more fused aromatic rings that are
omposed of C- and H-atoms. N-PACs usually include cyano
CN), amino (NH2), imino (NH), nitro (NO2) and replace-
ent of a CH group in the benzene rings by a nitrogen atom.
hey are produced mainly by the incomplete combustion of
oal, petroleum and industrial processes, e.g. carbon anode
nd graphite production as well as the use of coal tar. PAHs
nd N-PACs are carcinogenic mutagenic and toxic[1–8]. Al-

hough N-PACs exist usually with much smaller quantity than
AHs, previous studies proved that N-PACs were more toxic

han their parent PAHs[9]. These compounds are ubiquitous

∗ Corresponding author. Tel.: +86 931 891 2578; fax: +86 931 891 2582.
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in the environment as priority contaminants. Some of t
such as nitro-compounds can form adducts with DNA
interact with proteins[10]. Because of their toxicity, bioa
cumulation and persistence in the environment and the
tential adverse effects on human and wildlife, N-PACs h
received considerable attention in recent decades.

Gas chromatography (GC), as one of the first chrom
graphic separation techniques, has been used to enviro
tal analysis for many years. It was first applied to ana
PAHs in the early 1960s and then progressed rapidly
widely. Nowadays, GC continues to play an important
in the identification and quantification of these ubiquit
pollutants, such as volatile organic compounds (VOCs),
ticides, halogenated compounds and polycyclic aromati
drocarbons, in the environment[11]. It will continue to be a
promising method in the environmental analysis in the fu

Quantitative structure–property relationship (QSPR)
vides a promising method for the estimation of retention

039-9140/$ – see front matter © 2005 Published by Elsevier B.V.
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dices of organic compounds based on the descriptors derived
solely from the molecular structure to fit experimental data
[12,13]. QSPR study cannot only develop a method for the
prediction of the property of interests but also can identify and
describe important structural features of molecules that are
responsible for variations in molecular properties. The advan-
tage of this approach over other methods lies in the fact that
the descriptors used can be calculated from structure alone
and are not dependent on any experiment properties. This
method has become very useful in the prediction of physico-
chemical properties. The main steps in this method includes:
data collection, molecular geometry optimization, molecular
descriptor generation, descriptor selection, model develop-
ment and finally model performance evaluation[14,15].

To develop a QSPR model, molecular structures are often
represented using molecular descriptors, which encode much
structural information. In recent years, there has been a shift
from empirical parameters to purely calculated descriptors,
such as topological indices and quantum chemical descrip-
tors. The advantage of these calculated descriptors over other
empirical descriptors is the possibility to calculate descrip-
tors solely from molecular structure and apply them to sets
of structurally diverse compounds. After the calculation of
molecular descriptors, linear methods, such as multiple linear
regression (MLR), principal component regression (PCR),
partial least squares (PLS) and heuristic method (HM) imple-
m hods
c nship
b
Q ysico-
c
a int,
o dex
o

has
b ,
o udies
o was
t aphic
r am-
e to ex-
p f RI.
T pre-
d and
g eten-
t ctory
i

2

2

ical
s the
m used

as the descriptors. They contain topological connectivity in-
dices, properties depending on the charge distribution in the
molecule and various thermodynamic functions at different
temperatures and solvent characteristics. Their correspond-
ing molecular descriptors include constitutional, topological,
electrostatic and quantum-chemical, geometrical, thermody-
namic descriptors, etc. Constitutional descriptors reflect only
the molecular composition of the compound without using
the geometry or electronic structure of the molecule, which
related to the number of atoms, rings and bonds, for exam-
ple, absolute and relative numbers of C, H, O, S, N, F, Cl,
Br, I, P atoms; absolute and relative numbers of single, dou-
ble, triple and aromatic bonds; molecular weight and average
atomic weight; number of benzene rings, number of benzene
rings divided by the number of atoms. Topological indices
are two-dimensional (2D) descriptors based on graph theory
concepts[21–23]. These indices are widely used in QSPR and
QSAR studies. They help to differentiate the models accord-
ing to their size, degree of branching, flexibility and over-
all shape. Electrostatic descriptors reflect characteristics of
the charge distribution of the molecule such as total molec-
ular surface area (TMSA) and partial positive surface area
(PPSA). Quantum-chemical descriptors include information
about binding and formation energies, partial atom charge,
dipole moment and molecular orbital energy levels.
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ented in the software CODESSA and or non-linear met
an be used in the development of a mathematical relatio
etween the structural descriptors and the property[15,16].
SPR has been investigated to describe and predict ph
hemical property of PAHs and their derivatives. Ribeiro[12]
nd Ferreira[13] established QSPR models of boiling po
ctanol–water partition coefficient and retention time in
f some PAHs.

Quantitative structure–retention relationship (QSRR)
een studied widely of these compounds[17,18]. However
nly a few papers have mentioned about the QSRR st
f N-PACs [19,20]. The purpose of the present study

o investigate the relationship between gas chromatogr
etention indices of 117 N-PACs and their molecular par
ters. Moreover, molecular descriptors were discussed
lore the influence of structural features on the values o
his paper provided a simple and straightforward way to
ict the retention indices of N-PACs from their structures
ave some insight into structural features related to the r

ion of the compounds. The prediction results are satisfa
n all the three groups.

. Theory

.1. Molecular descriptors

In QSPR studies, molecular descriptors of the chem
tructures are important factors affecting the quality of
odels. Various structural attributes of the molecule are
.2. The heuristic method

The heuristic method (HM) (also called the heuri
ulti-linear regression) performed in CODESSA was a

edure applied to pre-select the descriptors. It can per
complete search for the best multi-linear correlations
multitude of descriptors at a high speed in order to b

he best multi-linear QSAR/QSPR model. The proceedin
he descriptor selection through heuristic method is sh
s follows. First of all, all descriptors were pre-selected
liminating: (i) those descriptors that are not available
ach structure and (ii) descriptors having a small varia

n magnitude for all structures. Descriptors for which v
es are not available for every structure in the data in q

ion and which have a constant value for all structures in
ata set are discarded. Thereafter, the one-parameter

ation equations for each descriptor are calculated. The
educe further the number in the “starting set” of descrip
he following criteria are applied and a descriptor is el
ated if: (i) descriptors that give aF-test’s value below 1.

n the one-parameter correlation and (ii) descriptors w
-values are less than the user-specified value, etc. Th
escriptor has a higher squared correlation coefficient i
ne-parameter equations based on these descriptors.
tarting with the top descriptor from the pre-selected lis
escriptors the two-parameter correlations are calculate

ng the following pairs: the first descriptor with each of
emaining descriptors and the second descriptor with ea
he remaining descriptors, etc. The best pairs as evide
y the highestF-values in the two-parameter correlations
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chosen and used for further inclusion of descriptors in a simi-
lar manner. A stepwise addition of further descriptor scales is
performed to find the best multi-parameter regression models
with the optimum values of statistical criteria (highest values
of R2, theR2

CV, theF-value and the lowests2). R2 is the cor-
relation coefficient ands2 is the squared standard error.R2

CV
is the cross-validated coefficient that describes the stability
of a regression model obtained by focusing on the sensitiv-
ity of the model to the elimination of any single data point.
The obtained regression is used to predict the value of this
point, and the set-off estimated values calculated in this way
is correlated with the experimental values.

The heuristic method usually produces correlations two to
five times faster than other methods with comparable quality
[24]. HM, as a good estimation method about what quality of
correlation to expect from the data and a good tool to build
models, has been applied to model and predict the retention
indices of N-PACs in this paper. The result has proved the
superiority of this method.

3. Experiment and methodology

3.1. Retention indices

The chromatographic data used were obtained from the
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Polak–Ribiere algorithm until the root mean square gradient
was 0.01. The output files exported from MOPAC were trans-
ferred into software CODESSA, developed by Katritzky et
al. [29,30], to calculate descriptors. CODESSA has been suc-
cessfully used in various QSPR researches. In this program,
a large number (>400) of molecular descriptors can be calcu-
lated on the basis of the geometrical and electronic structure
of the molecules, which can be sorted into five classes: topo-
logical (Wiener index, Randic indices, Kier–Hall shape in-
dices, etc.); constitutional (number of various types of atoms
and bonds, number of rings, molecular weight, etc.); geomet-
rical (moments of inertia, molecular volume, molecular sur-
face area, etc.); electrostatic (minimum and maximum partial
charges, polarity parameter, charged partial surface area de-
scriptors, etc.); quantum chemical (reactivity indices, dipole
moment, HOMO and LUMO energies, etc.)[29,30]. Four de-
scriptors have been totally calculated in present investigation:
Randic index (order 3), Kier–Hall index (order 2), average
valency of H-atom and number of benzene rings.

After the generation of descriptors, the heuristic method
was used to select the sets of descriptors that are most rele-
vant to the retention indices of these compounds. These de-
scriptors can give some information on the affecting degree
for retention of different descriptors and well understand the
correlation between the experimental and calculated values.
Then several sets of multi-linear models were automatically
b
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aper by Vassilaros et al.[25] and consisted of gas chroma
raphic RI of 117 N-PACs. A complete list of the names
orresponding experimental RI values of compounds
iven in Table 1. The equipment and procedures were
cribed in Ref.[23]: the SE-52 coated fused-silica colum
aried in length from 15 to 20 m and were either 0.3 mm
r 0.2 mm i.d.; hydrogen was used as the carrier gas with
ar velocity of 100 cm/s; GC was performed using Hew
ackard 5880A gas chromatographs equipped with cap
ystems at 40–265◦C at 4◦C/min with a 2-min initial isother
al period; theI values were generated from the raw reten
ata by use of a BASIC program written for the HP 5880
nd based on the equation of Van den Dool and Kratz[26].

.2. Descriptor calculation and model developing

To obtain a QSRR model, compounds must be re
ented using molecular descriptors. Descriptors are g
ted solely from the molecular structures and aimed to
erically encode meaningful features of each molecule

alculation process of the molecular descriptors is desc
s below: all the two-dimensional structures of the molec
ere drawn using ISIS/Draw. Then the structures were
ptimized using MM+ molecular mechanics force field
recisely optimized with semi-empirical AM1 method i
lemented in Hyperchem software package[27]. The fina
eometries were obtained with semi-empirical AM1 met

n MOPAC program[28]. All calculations were carried o
t restricted Hartree Fock level with no configuration in
ction. The molecular structures were optimized using
uilt by the same way in CODESSA.

. Results and discussion

A total of 420 descriptors were calculated by the CO
ESSA program for each of the compounds. After the he

ic reduction, the pool of descriptors was reduced to 209
etermine the optimum number of descriptors in a mod
ariety of subset sizes were investigated. To select the s
escriptors that are most relevant to retention indices an

ectively show the relation between descriptors and rete
ndices of these compounds, three subsets with the de
ors from one to three were determined to establish the Q
odels. The predicted results for the three sets were lis

able 1. The one to three parameter models are listed a
ows:

One-parameter model

RI = 5.7952× 101 + 4.8072× 101RI3

R2 = 0.9571, R2
CV = 0.9556, F= 2565.88,

s2 = 288.1697

(1)

Two-parameter model

RI = 5.0772× 103 + 8.1656× 101KHI2

−5.7892× 103AVH

R2 = 0.9776, R2
CV = 0.9761, F= 2492.57,

s2 = 151.5056

(2)
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Table 1
Experimental and calculated retention indices for N-PACs

No. Compounds Experimental Predicted

One-para Two-para Three-para

1 1-Aminoindan 207.63 235.41 229.37 235.14
2 Quinoline 210.26 224.59 214.57 207.34
3 Isoquinoline 214.14 224.59 219.44 211.38
4 1-Methylindole 216.90 235.41 211.62 217.63
5 Indole 222.66 212.57 235.41 231.49
6 7-Azaindole 223.70 212.57 252.27 233.47
7 2-Methylquinoline 224.13 240.72 225.24 220.37
8 8-Methylquinoline 225.18 247.03 226.87 231.15
9 1-Methylisoquinoline 229.21 247.03 225.53 220.29

10 7-Methylquinoline 231.37 240.72 231.85 226.05
11 5-Aminoindole 232.12 228.70 239.29 243.22
12 3-Methylquinoline 232.47 240.72 230.98 234.92
13 7-Methylindole 235.49 235.01 240.18 240.00
14 4-Methylquinoline 235.77 247.03 228.14 222.60
15 3-Methylindole 239.20 235.41 235.58 236.45
16 2-Methylindole 240.10 225.09 238.88 239.24
17 2,7-Dimethylquinoline 244.04 256.85 251.60 246.10
18 2,6-Dimethylquinoline 244.19 256.85 251.42 245.95
19 1,2-Dimethylindole 244.42 260.60 227.36 234.24
20 2,2′-Bipyridyl 247.15 248.62 250.92 237.89
21 2,4-Dimethylquinoline 247.96 258.80 248.13 242.87
22 4-Azabiphenyl 252.35 248.62 255.66 241.99
23 2,4-Dimethylquinoline 256.65 241.22 260.59 261.38
24 1-Cyanonaphthalene 256.75 262.14 246.75 255.85
25 2,3-Dimethylindole 257.32 260.59 246.25 249.00
26 2-Cyanonaphthalene 260.88 261.09 249.43 258.30
27 5-Nitroindan 261.55 263.37 257.67 259.35
28 1-Aminonaphthalene 262.98 247.03 248.66 256.57
29 2-Aminonaphthalene 265.53 240.72 251.62 259.27
30 2,3,5-Trimethylindole 273.61 277.05 274.58 276.25
31 2-Aminobiphenyl 273.63 271.06 281.82 286.28
32 1-Nitronaphthalene 274.95 273.63 277.39 280.75
33 4-Azafluorene 279.85 302.70 317.72 298.02
34 2-Nitronaphthalene 280.63 275.39 277.44 281.14
35 3-Methyl-2-aminonaphthalene 283.73 268.84 267.64 276.43
36 2-Nitrobiphenyl 290.25 297.66 296.51 299.62
37 Phenazine 294.37 314.85 303.30 296.03
38 4-Aminobiphenyl 298.05 268.36 293.02 295.23
39 Benzo[h]quinoline 301.94 317.25 307.84 301.26
40 Acridine 304.04 314.85 305.38 299.48
41 Acridan (9,10-dihydroacridine) 304.11 314.85 321.70 324.14
42 Benzo[f]quinoline 307.94 317.25 306.98 300.54
43 Phenanthridine 307.94 317.25 305.72 309.10
44 3-Nitrobiphenyl 310.09 299.02 301.27 303.64
45 Carbazole 311.71 302.70 308.09 309.36
46 4-Nitrobiphenyl 314.59 301.96 301.14 303.51
47 3-Methylbenzo[f]quinoline 320.26 333.38 322.58 317.37
48 2-Methylbenzo[f]quinoline 320.50 333.71 328.36 331.96
49 2-Methylacridine 324.34 330.98 327.87 322.22
50 1-Methylcarbazole 324.45 325.74 326.33 328.27
51 4-Aminofluorene 325.11 322.52 334.42 335.03
52 1-Aminofluorene 327.21 325.74 332.02 333.09
53 3-Methylcarbazole 328.81 319.16 326.98 329.33
54 3-Aminofluorene 329.08 319.16 336.47 336.98
55 2-Methylcarbazole 329.61 318.83 327.69 329.87
56 9-Methylacridine 331.15 341.19 320.10 315.09
57 4-Methylcarbazole 331.88 322.52 323.63 326.19
58 2-Aminofluorene 331.91 318.83 337.89 338.08
59 6-Phenylquinoline 340.84 341.42 337.85 338.33
60 1,4-Dimethylcarbazole 343.16 346.24 344.56 347.18
61 2-Phenylindole 346.18 326.87 342.42 340.35
62 1,2-Dimethylcarbazole 347.31 354.60 342.55 345.42
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Table 1 (Continued)

No. Compounds Experimental Predicted

One-para Two-para Three-para

63 2-Azafluoranthene 347.39 381.60 372.98 369.28
64 1-Azafluoranthene 348.17 381.60 369.69 366.45
65 1,3-Dimethylcarbazole 348.45 337.84 348.53 350.82
66 9-Cyanoanthracene 350.46 351.80 340.53 350.18
67 7-Azafluoranthene 350.50 381.60 368.95 365.88
68 9-Cyanophenanthrene 351.84 352.54 339.43 349.30
69 2-Nitrofluorene 353.06 353.50 359.20 356.47
70 4-Aminophenanthrene 353.97 337.07 346.05 353.65
71 9-Nitroanthracene 357.42 360.8 368.78 373.25
72 1-Azapyrene 357.73 381.86 372.04 368.59
73 4-Azapyrene 357.94 381.86 370.21 348.28
74 2-Azapyrene 362.43 381.86 375.23 371.39
75 1-Aminophenanthrene 362.62 339.96 340.59 349.41
76 1-Aminoanthracene 362.83 337.62 343.96 352.42
77 9-Aminophenanthrene 362.83 336.68 340.20 349.15
78 9-Aminoanthracen 363.91 341.19 354.44 360.14
79 Benzo[def]carbazole 363.92 367.31 366.58 372.34
80 3-Aminophenanthrene 365.60 333.71 358.50 363.64
81 2-Aminophenanthrene 365.80 333.38 343.92 352.39
82 2-Aminoanthracene 367.45 330.98 347.03 355.20
83 3,5-Diphenylpyridine 372.84 365.05 370.54 368.02
84 9-Phenylcarbazole 381.51 417.66 411.44 414.52
85 Benz[c]acridine 392.60 407.84 399.65 394.18
86 Benz[a]acridine 398.65 407.84 398.90 393.54
87 1-Azabenz[a]anthracene 400.00 407.84 404.05 397.81
88 4-Azachrysene 401.16 410.19 400.96 395.00
89 Benzo[a]carbazole 402.22 395.96 401.38 403.28
90 1-Azachrysene 407.18 410.19 399.78 394.04
91 Benzo[b]carbazole 409.63 393.29 400.19 402.74
92 3-Aminofluoranthene 409.97 404.99 405.89 407.79
93 2-Azachrysene 411.49 410.19 403.52 397.21
94 Benzo[c]carbazole 411.89 393.62 401.69 403.52
95 4-Aminopyrene 412.31 401.56 405.41 417.31
96 2-Aminopyrene 413.83 394.38 424.21 432.22
97 1-Aminopyrene 415.39 405.25 419.39 428.11
98 1-Nitropyrene 421.48 431.85 431.31 439.26
99 2,2′-Biquinoline 422.56 434.22 428.67 409.66

100 7,9-Dimethylbenz[c]acridine 438.32 450.92 446.81 440.20
101 5,7-Dimethylbenz[a]acridine 438.38 454.22 454.08 447.60
102 7,10-Dimethylbenz[a]acridine 439.46 450.59 457.95 451.16
103 2-Aminobenzo[c]phenanthrene 450.10 424.64 440.25 448.65
104 4-Aminobenzo[c]phenanthrene 451.51 430.89 436.57 445.40
105 10-Azabenzo[a]pyrene 455.40 472.53 465.73 453.39
106 6-Aminochrysene 463.19 429.95 445.91 452.62
107 9,10,12-Trimethylbenz[a]acridine 466.79 476.09 473.98 465.78
108 Dibenz[a,c]phenazine 474.08 498.57 484.79 479.64
109 5-Aminochrysene 487.88 427.00 438.37 446.83
110 Dibenz[a,h]acridine 488.55 500.84 493.43 488.44
111 Dibenzo[a,i]carbazole 490.57 489.23 492.05 495.17
112 Dibenz[a,j]acridine 490.66 500.84 492.72 487.84
113 6-Nitrobenzo[a]pyrene 501.71 519.29 513.04 514.46
114 Dibenzo[a,g]carbazole 502.30 486.89 492.25 495.33
115 Dibenzo[c,g]carbazole 502.92 484.82 496.11 498.31
116 7-Aminobenzo[a]pyrene 511.98 495.57 498.44 501.51
117 6-Aminobenzo[a]pyrene 515.66 499.68 496.98 500.01

Three-parameter model

RI = 4.4234× 103 − 7.3777× 101KHI2

−4.4648× 103AVH + 9.4760NBR

R2 = 0.9846, R2
CV = 0.9834, F = 2401.06,

s2 = 105.5948

(3)

Among these equations, Eq.(1) contains only one in-
dependent variable RI3 that means Randic index (order
3). The two parameters included in Eq.(2) are KHI2 and
AVH that means Kier–Hall index (order 2) and average va-
lency of a H-atom, respectively. In Eq.(3), number of ben-
zene rings (NBR) was added in the three-parameter model.
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Fig. 1. The predicted RI vs. experimental values based on the one-parameter
model by heuristic method.

These equations suggest that retention indices can be de-
scribed as a sum of interactions of molecular topology, ge-
ometric and electronic properties, and quantum-chemical
data. The values of the four descriptors were summarized
in Table 2. The single-descriptor models were given in
Table 3.

The one-parameter correlation equation obtained for the
whole data set of 117 compounds is presented in detail
in Table 1 and Fig. 1 with squared correlation coeffi-
cientR2 = 0.9571. The cross-validated correlation coefficient
R2

CV = 0.9556, in comparison with correlation coefficientR2,
indicates the stability of the QSPR model. The descriptor in
this model is Randic index (order 3) denoted as RI3, which
also has the highest single parameter correlationR2 = 0.9571.
Randic index was first defined by Randic[21], whose pri-
mary purpose was to characterize the branch of hydrocarbon
of methane series molecule quantitatively. The Randic index
and its subsequent Kier index, which was improved by Kier
and Hall[22,23] from the first were together called molec-
ular connectivity index (χ). The general formula forχis as
follows in Eq.(4),

mχ =
∑

(δiδjδk · · · )−1/2 (4)

wherei, j andk correspond to the coordination numbers of
atoms andm means the order ofχ. In this study,m equals 3,
s

3

f the
a cur-
r com-
p e sub-
s uch
a nds
h that
t r RI3.

Table 2
The value of the four descriptors of the compounds

No. RI3 KHI2 AVH NBR

1 3.6916 2.8440 0.9863 1
2 3.4663 2.1961 0.9797 0
3 3.4663 2.2228 0.9793 0
4 3.6916 2.4855 0.9843 1
5 3.2163 2.0649 0.9743 1
6 3.2163 1.9189 0.9693 0
7 3.8019 2.6453 0.9842 0
8 3.9332 2.6500 0.9840 1
9 3.9332 2.6175 0.9838 0

10 3.8019 2.6996 0.9839 0
11 3.5519 2.8817 0.9851 1
12 3.8019 2.7054 0.9841 1
13 3.6832 2.5168 0.9799 1
14 3.9332 2.6450 0.9837 0
15 3.6916 2.5173 0.9807 1
16 3.4767 2.5396 0.9804 1
17 4.1374 3.1488 0.9868 0
18 4.1374 3.1488 0.9868 0
19 4.2153 2.9036 0.9875 1
20 3.9663 2.4300 0.9768 0
21 4.1780 3.0977 0.9867 0
22 3.9663 2.4718 0.9765 0
23 3.8123 3.0431 0.9837 1
24 4.2476 2.6385 0.9804 2
25 4.2153 2.9206 0.9845 1
26 4.2256 2.6737 0.9805 2
27 4.2731 3.0637 0.9845 1
28 3.9332 2.5684 0.9791 2
29 3.8019 2.6066 0.9791 2
30 4.5577 3.4240 0.9867 1
31 4.4332 2.9533 0.9788 2
32 4.4865 2.7554 0.9768 2
33 5.0912 3.2321 0.9765 0
34 4.5231 2.7886 0.9772 2
35 4.3870 3.0559 0.9827 2
36 4.9865 3.1403 0.9789 2
37 5.3440 3.2010 0.9786 1
38 4.3770 2.9880 0.9774 2
39 5.3939 3.3618 0.9801 1
40 5.3440 3.3738 0.9807 1
41 5.3440 3.6161 0.9813 2
42 5.3939 3.3568 0.9802 1
43 5.3939 3.3626 0.9805 2
44 5.0146 3.1735 0.9786 2
45 5.0912 3.2162 0.9780 2
46 5.0758 3.1700 0.9785 2
47 5.7295 3.8060 0.9838 1
48 5.7364 3.8661 0.9836 2
49 5.6795 3.8772 0.9839 1
50 5.5705 3.6681 0.9812 2
51 5.5035 3.7153 0.9805 2
52 5.5705 3.7073 0.9808 2
53 5.4336 3.7196 0.9818 2
54 5.4336 3.7505 0.9806 2
55 5.4267 3.7196 0.9817 2
56 5.8919 3.7711 0.9837 1
57 5.5035 3.6681 0.9817 2
58 5.4267 3.7505 0.9804 2
59 5.8967 3.7769 0.9808 2
60 5.9969 4.1199 0.9844 2
61 5.5940 3.6363 0.9780 2
62 6.1709 4.1006 0.9845 2
63 6.7326 4.1363 0.9798 2
o RI3 can be calculated by the following formula:

χ =
∑

(δiδjδkδl)
−1/2 (5)

The descriptor was dependent on the connectivity o
toms in a molecule. Being the derivatives of PAHs, the
ent set of compounds had similar structures that all the
ounds had benzene rings, some of them had the sam
tituent –CH3 and others had the similar substituents s
s, –NH2, –NO2. Thus, all the structures of these compou
ad the similar branch degree and molecular connectivity

he structure could be described by the same descripto
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Table 2 (Continued)

No. RI3 KHI2 AVH NBR

64 6.7326 4.1088 0.9799 2
65 5.8223 4.1750 0.9845 2
66 6.1125 3.8056 0.9807 3
67 6.7326 4.1088 0.9801 2
68 6.1280 3.8027 0.9808 3
69 6.1479 3.9325 0.9793 2
70 5.8063 3.7321 0.9787 3
71 6.2998 3.9246 0.9775 3
72 6.7379 4.1386 0.9799 2
73 6.7379 4.1444 0.9803 0
74 6.7379 4.1711 0.9799 2
75 5.8664 3.7291 0.9796 3
76 5.8177 3.7677 0.9796 3
77 5.7981 3.7325 0.9797 3
78 5.8919 3.7325 0.9773 3
79 6.4352 3.9979 0.9789 3
80 5.7364 3.7673 0.9770 3
81 5.7295 3.7673 0.9796 3
82 5.6795 3.8059 0.9796 3
83 6.3883 4.1943 0.9810 2
84 7.4826 4.7053 0.9811 3
85 7.2785 4.5395 0.9808 2
86 7.2785 4.5345 0.9809 2
87 7.2785 4.5612 0.9804 2
88 7.3272 4.5225 0.9804 2
89 7.0313 4.3798 0.9783 3
90 7.3272 4.5175 0.9805 2
91 6.9757 4.4155 0.9790 3
92 7.2191 4.4761 0.9789 3
93 7.3272 4.5442 0.9802 2
94 6.9826 4.3798 0.9782 3
95 7.1477 4.5143 0.9795 4
96 6.9983 4.5525 0.9768 4
97 7.2244 4.5108 0.9770 4
98 7.7777 4.6978 0.9776 4
99 7.8272 4.7784 0.9792 1

100 8.1744 5.4403 0.9854 2
101 8.2431 5.6071 0.9865 2
102 8.1676 5.6612 0.9866 2
103 7.6278 4.9309 0.9793 4
104 7.7578 4.8927 0.9794 4
105 8.6240 5.3077 0.9803 2
106 7.7382 4.8932 0.9778 4
107 8.6982 5.8712 0.9868 2
108 9.1658 5.5007 0.9797 3
109 7.6768 4.8962 0.9792 4
110 9.2130 5.7002 0.9810 3
111 8.9714 5.5435 0.9790 4
112 9.2130 5.6951 0.9811 3
113 9.5967 5.8318 0.9795 4
114 8.9227 5.5435 0.9790 4
115 8.8796 5.5435 0.9783 4
116 9.1033 5.6750 0.9798 4
117 9.1888 5.6397 0.9795 4

Table 3
The single-descriptor models and theirR2 ands2

Descriptor Model R2 s2

RI2 RI = 5.7952 + 4.8072RI2 0.9571 288.1697
KHI2 RI = 3.1981 + 8.1098KHI2 0.9332 448.6354
NBR RI = 2.2819 + 5.6661NBR 0.6398 2419.5054
AVH RI = 5.1922− 4.9473AVH 0.0325 6499.6538

Fig. 2. The predicted RI vs. experimental values based on the two-parameter
model by heuristic method.

For the two-parameter model, Kier–Hall index (this is
KHI2), as a topological descriptor, was substituted for Randic
index in the one-parameter model. KHI2 also gave the single
parameter correlationR2 = 0.9332 compared withR2 of RI3,
which showed a great correlation between RI3 and KHI2.
The Kier–Hall index, originally defined by Randic[21] and
subsequently refined by Kier and Hall[22,23], was a series
of numbers designated by order and subgraph type. Com-
pared with Randic index, this descriptor could differentiate
unsaturated molecules that included hetero-atoms and mul-
tiple bonds. In the current case, KHI2 gave the information
on N hetero-atom with a similar connectivity pattern in the
molecule, as well as the information on similar connectivity
of unsaturated bonds in benzene rings.

Another descriptor in Eq.(2) was AVH, which belonged
to the quantum-chemical descriptors.Table 1show a poor
correlationR2 = 0.0325 between AVH and retention indices.
But the correlation did not influence the final two-parameter
resultR2 = 0.9776 (Fig. 2). This descriptor may be regarded
as a correlative descriptor with the descriptor KHI2. The dif-
ferent position of N-atom as well as the different conjugated
systems in each molecule led to the diverse average values of
H-atom. From this descriptor, we can see that N-atom is also
an influencing factor on the retention indices.

Compared with the two-parameter model, NBR was added
in the three-parameter model. FromTable 3 and Fig. 3,
R Ob-
s bers
o ease
c nds
w een
s ben-
z lec-
u zene
r e van
d hase
a

2 = 0.6398 indicated NBR have a great impact on RI.
ervingFig. 4, we can see that with the increasing of num
f benzene rings, the calculated retention indices incr
orrespondingly. The GC retention indices of compou
ere determined by the intermolecular interaction betw
tationary phase and N-PACs mainly. The numbers of
ene rings influence the molecular weight and the mo
lar weight increases along with the increasing of ben
ings. Thus, an increase in this descriptor enhances th
er Waals interaction between N-PACs and stationary p
nd leads to an increase in the value of RI.
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Fig. 3. The predicted RI vs. experimental values based on the three-
parameter model by heuristic method.

From the above discussion, the three-parameter model,
which shows the highestR2, is obviously the best one. In or-
der to evaluate its predictive ability, the whole data set was
randomly divided into the test set and the training set and a
leave-one-out cross-validation for the training set was per-
formed. The test set contained 11 compounds 9, 19, 29, 39,
49, 59, 69, 79, 89, 99, 109 and the training set contained the
others. The squared correlation coefficient (R2) for the train-
ing set and the test set were 0.9863 and 0.9743, respectively,
confirming the powerful predictive capability of the model.
Fig. 5 shows the plot of the calculated versus experimental
RI for the training set and the test set.

As can be seen from above discussion, the GC retention
behavior of these compounds depended on the connection of
the carbon backbone, the positions of N-atom and the con-
jugate bonds in benzene rings system. From the obtained re-
sults, we can see that the selected descriptors could account
for these features and topological descriptor proved to be the
most important factor influencing the GC retention index of
N-PACs.

Fig. 5. The predicted RI of the training set and the test set vs. experimental
values based on the three-parameter model by heuristic method.

5. Conclusion

A quantitative structure–property relationship model was
derived to study the GC retention index of a diverse set of
117 N-PACs. Three QSPR models were developed with the
squared correlation coefficient of 0.9571, 0.9776 and 0.9846.
These models showed strong predictive ability. Among all the
descriptors, topological descriptors were found to have high
coding capabilities for the GC retention index and were se-
lected to represent the chemical structures. The present work
provides an effective method for the prediction of the GC
retention indices for the N-PACs. This study also showed
that the utility of the QSPR treatment involving descriptors
derived solely from chemical structure and the correlation
equation and descriptors can be used for the prediction of the
retention index for unknown structures.
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